

Scientist-to-Scientist

Who Are We

We are a long established international preclinical CRO (Contract Research Organisation), accredited by AAALAC and fully GLP compliant. We have been providing efficacy evaluation and safety pharmacology services for almost 40 years, covering the drug development process from early screening through regulatory submission.

We provide pathophysiological models in multiple species and cell lines, customized procedures and tailored solutions, including *in vitro* assays, drug formulation analysis and bioanalytical services, from high throughput screening, high-content analysis and high-content histology platforms, to models for psychiatric and neurological disorders, pain, cardiac and vascular diseases, metabolic and eating disorders, dermatology, and oncology.

Our Values

Client projects are our priority

We listen to our clients and provide them with our expert advice, established models, tailor-made solutions and flexibility.

We aim to be an extension of your team of expert scientists

We continuously work hand in hand with our clients and their scientists. We develop the best solutions together.

We are reliable, experienced and quality-focused

We are AAALAC accredited and GLP compliant and we maintain operational excellence with the highest quality standards to meet and exceed expectations.

Where Are We

Our Expertise

Assay & Model Development

Our vast experience and varied expertise, including newly incorporated *in vitro*, biomarker and histology capabilities, provide the perfect solution for clients looking for bespoke model development.

We are uniquely placed to combine in vitro and in vivo models and capabilities from multiple species and disease areas in order to answer the specific questions from our clients.

Whether performing high-throughput screening, high-content analysis, mechanism of action, efficacy or safety testing, we are the ideal partner for your development programs.

Cell Biology

We maintain a panel of over 100 validated cell-based assays that allow for the quantification of key phenotypic and molecular events at the single-cell level.

Most of the cellular assays listed below can be adapted to different biological models, or modified for different detection platforms, according to your needs.

Learn about our assay development services:

Cell proliferation, migration, differentiation (live cell kinetic image analysis - Incucyte®, flow cytometry, Ensight).

Primary cell isolation, culture and characterization (Immunophenotyping ...) and iPS cell handling (culture and functional assays).

Biomarker analysis (Luminex, WB, ELISA, CBA, HTRF, AlphaLisa ...).

Cell stress, metabolism, inflammation and signaling pathways.

Predictive toxicology (cell death/health, apoptosis).

Gene expression modulation (siRNA transfection, AAV/LVV transduction).

Consulting

Our unique expertise and experience, combined with our broad portfolio of services in multiple species, allows us to provide unparalleled consulting and advice on the preclinical process and bespoke model development to address specific questions. This includes efficacy evaluation, safety pharmacology, discovery and regulatory needs.

News & Updates 10

RECENT NEWS & UPDATES NEWS TESTS & MODELS RECENT POSTERS & PUBLICATIONS

Gastrointestinal System 32

COLONIC MOTILITY EMESIS - NAUSEA **FOOD ALLERGY GASTRIC EMPTYING GASTROINTESTINAL TRANSIT GASTROPARESIS** INTESTINAL MUCOSITIS **ULCEROGENIC ACTIVITY** VISCERAL SMOOTH MUSCLE ADDITIONAL MODELS

Cardiovascular System 14

ARRYTHMIAS & CARDIAC TOXICITY AUTONOMIC NERVOUS SYSTEM CARDIAC ACTIVITY RECORDING **HEMODYNAMICS** HYPERTENSION

ISOLATED VASCULAR BEDS

Histology 36

BIOMARKER ASSAYS

TISSUE PROCESSING **STAINING SCANNING** PATHOLOGY SERVICES AUTOMATED IMAGE ANALYSIS

Central Nervous System 18

CNS GENERAL SCREENING **COGNITION & AGING** DRUG ABUSE & DEPENDENCE (SAFETY & EFFICACY) **ELECTROPHYSIOLOGY EPILEPSY NEURODEGENERATION** PSYCHIATRIC DISEASES

STROKE **BIOMARKER ASSAYS**

Inflammation 39

IMMUNE RESPONSE IN VIVO MODELS **BIOMARKER ASSAYS**

Dermatology 28

INFLAMMATORY PATHWAY / ANTI-INFLAMMATORY ACTIVITY

OXIDATIVE DAMAGE / ANTI-OXIDANT POTENTIAL

PIGMENTATION PREDICTIVE TOXICITY PROTECTION AGAINST POLLUTION SKIN AGING SKIN MICROCIRCULATION SKIN REGENERATION IN VIVO **BIOMARKER ASSAYS**

Liver & Hepatic System 42

IN VIVO / IN VITRO **BIOMARKER ASSAYS**

Medical Devices 45

CYTOTOXICITY IRRITATION SKIN SENSITIZATION TOXICITY

Obesity & Metabolic 47 Disorders

DIABETES METABOLIC DISORDERS **OBESITY BIOMARKER ASSAYS**

Respiratory System 68 EX VIVO / IN VIVO BIOMARKER ASSAYS

Oncology

RECEPTOR PHARMACOLOGY & SIGNALING PATHWAY

TARGETING ANGIOGENESIS TARGETING THE IMMUNE SYSTEM: IMMUNO-ONCOLOGY

TARGETING METASTASIS TARGETING TUMOR-ASSOCIATED SIDE EFFECTS TARGETING PRIMARY TUMOR

BIOMARKER ASSAYS

Pain 56 ACUTE PAIN **INFLAMMATORY PAIN** NEUROPATHIC PAIN POST-OPERATIVE PAIN VISCERAL PAIN NON-EVOKED PAIN ENDPOINTS

Predictive Toxicity 64 CARDIOTOXICITY DRUG-INDUCED VASCULAR INJURY (DIVI) GASTROINTESTINAL SYSTEM GENERAL TOXICITY **HEPATOTOXICITY NEPHROTOXICITY** NEUROTOXICITY SKIN TOXICITY

Safety Regulatory 7 Package BEHAVIORAL PHARMACOLOGY STUDIES FOR INVESTIGATING ABUSE & DEPENDENCE POTENTIAL CORE BATTERY [ICH S7] FORMULATION ANALYSIS SUPPLEMENTAL STUDIES

Recent News & Updates

Unique Screening Packages

Porsolt has recently developed unique Scan-by-PorsoltTM screening packages, to assist our clients with their early stage development programs. These packages combine our many years of experience with our internationally recognized expertise and varied capabilities, to create a unique scan of compounds in a fraction of the time and at a very low cost, relative to standard screening models.

This innovative approach assists with the internal decision-making process and helps guide our clients' development programs at a very early stage, providing the necessary support to engage in more involved studies, where required.

Examples of screening packages offered in key therapeutic areas include:

Seizure Scan-by-PorsoltTM screens for different domains of Epilepsy, including General Seizure, Partial Seizure, and Refractory Seizure.

Pain Scan-by-Porsolt[™] focuses on key domains within the Pain field including Nociception, Visceral Pain, and Inflammatory Pain – guiding the client towards the specific domain of relevance for their program.

These packages are extremely valuable for obtaining a preliminary signal of specific domains of interest within a therapeutic area and provide initial justification for where an asset could be of value.

Please contact us (contact@porsolt.com) to learn more about our other screening packages that are relevant to specific therapeutic areas of interest.

Dedicated Housing, Colony Management & Specialized Breeding Capabilities

Porsolt completed an extension of our facility at the end of 2023, focused on expanded space and capacity for small and large animals. This has resulted in faster turnaround times for the initiation of projects, at a time when lead times in the industry are being extended. More importantly, we are also now able to address the specific needs of our clients related to dedicated colony management.

These capabilities include specialist housing and breeding services for clients interested utilizing their own unique models, such as transgenic mice and knock-in rats, or dedicated large animal colonies for repeat projects. This new capacity overcomes many of the logistical issues involved with shipping and establishing colonies for immediate testing (as opposed to delaying projects due to the need for rederivation of colonies).

Please contact us (contact@porsolt.com) to discuss your colony maintenance needs and specific requirements for your studies.

Contracting Studies with Porsolt:

The Scientist-to-Scientist approach remains the priority

There are multiple ways Porsolt can be contracted to support the preclinical needs of our clients, including the use of thirdparty vendors for clients that centralize their procurement process.

Contracting directly with Porsolt

Scientist.com: Please search for Porsolt services in the providers

Science Exchange: Please search for Porsolt services in the providers

It is important to emphasize that whichever platform is used for contracting with Porsolt, our unique Scientist-to-Scientist approach, for which we are known, will always remain consistent and of the highest priority. This elevated level of scientific communication, input, and guidance, from our expert scientists, allows us to best design client studies and address their specific preclinical needs.

Recent Posters

SPS 2023

Intravenous self-administration in the rat: Advantages of transcutaneous buttons for improving Animal Welfare

S. Brèche, B. Péan, C. Rondeau and C. Froger-Colléaux

SEN 2023

MDMA in the treatment of anxiety and PTSD: a behavioral assessment in rodents

K. Walker, E. Esneault, C. Froger-Colléaux, E. Camperos, A. Lecoq and A-M. Hernier

SFN 2023

Cuprizone-induced demyelination in the mouse: immunohistochemical characterization

E. Esneault, C. Rondeau, S. Cottereau, S. Pedron and F. Simon

AcTox 2023

Characterization of a model of neurotoxicity by histology

F. Simon, G. Peyon, E. Esneault, C. Froger-Colléaux and S. Brèche

AcTox 2023

Dog Telemetry Assay Sensitivity to Detect QTc Prolongation: Retrospective Statistical Power Analysis, and Moxifloxacin Effects by Timepoint and Concentration-QTc Relationship Analysis

P. Guillaume, F. Tantot, S. Goineau-Brissieux, S. Brèche and G. Froget

AES 2023

Screening cascade for the evaluation of new anti-epileptic drug candidates

K. Walker, F. Simon, M. Paquet, M. Martineau and E. Esneault

EACR 2022

Triple negative breast cancer preclinical models reveal the therapeutic potential of Fingolimod

T. Rupp, O. Pelouin, L. Genest, C. Legrand, G. Froget, V. Castagné

EACR 2022

Therapeutic potential of Fingolimod and Dimethyl Fumarate in Non-Small Cell Lung Cancer preclinical models

T. Rupp, S. Debasly, L. Genest, L. Ribault; G. Froget, V. Castagné

AcTox 2022

In vitro predictive toxicity screening assays during early stage drug development: Case study data for the validity of 2D and 3D models S. Brèche, E. Esneault, S. Goineau-Brissieux, C. Legrand, M. Paquet, K. Walker and F. Simon

SPS 2022

The ferret: The gold standard for emesis assessment

S. Goineau-Brissieux, P. Guillaume, G. Froget

Recent Publications

Imiquimod-induced pruritus in female wild-type and knockin Wistar rats: underscoring behavioral scratching in a rat model for antipruritic treatments

K. Lariosa-Willingham, D. Leonoudakis, F. Simon, K. Walker, P. Guillaume, L. Warren and J. Stratton

BMC Research Notes 2023 (DOI: 10.1186/s13104-023-06627-1)

Genetic Background Influence on Hippocampal Synaptic Plasticity: Frequency-Dependent Variations between an Inbred and an Outbred Mice Strain

C-M. Roux, P. Lecouflet, J-M Billard, E. Esneault, M. Leger, P. Schumann-Bard and T. Freret

Int J Mol Sci. 2023 Feb 21;24(5):4304. (DOI: 10.3390/ijms24054304)

Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

C. Froger-Colléaux, E. Esneault, A-M Hernier and V. Castagné

Repeated Anodal Transcranial Direct Current Stimulation (RA-tDCS) over the Left Frontal Lobe Increases Bilateral Hippocampal Cell Proliferation in Young Adult but Not Middle-Aged Female Mice

S. Dumontoy, B. Ramadan, P-Y. Risold, S. Pedron, C. Houdayer, A. Etiévant, L. Cabeza, E. Haffen, Y. Peterschmitt and V. Van Waes Int J Mol Sci. (2023) May 14;24(10):8750. (DOI: 10.3390/ijms24108750)

Evaluation of Temozolomide and Fingolimod Treatments in Glioblastoma Preclinical Models

M. Davy, L. Genest, C. Legrand, O. Pelouin, G. Froget, V. Castagné and T. Rupp

Cancers (Basel). 2023 Sep 8;15(18):4478 (DOI: 10.3390/cancers15184478)

Discovery and Evaluation: Safety and Pharmacokinetics Assays Book Chapter: Central Nervous System (CNS) Safety Pharmacology studies

C. Froger-Colleaux, E. Esneault, A-M. Hernier, V. Castagné December 2022 (DOI: 10.1007/978-3-030-73317-9_3-1)

New Tests & Models

Central Nervous System

CNS GENERAL SCREENING

Neurite outgrowth (scratch assay)

Neurite outgrowth (scholl assay)

Electrical amygdala kindling (threshold stimulation)

MK-801-induced neurotoxicity

Dermatology

Imiquimod-induced psoriasis-like skin inflammation (rat)

Gastrointestinal System

Mastocyte staining - Toluidine blue

Inflammation

Bleomycin-induced lung injury

Oncology

Leptomeningeal carcinomatosis model

Pain

NEUROPATHIC PAIN

Spared nerve injury

VISCERAL PAIN

Dextran Sodium Sulfate (DSS)-induced colitis in mouse

Respiratory System

Bleomycin-induced pulmonary fibrosis

New Capabilities

ROUTES OF ADMINISTRATION

Intracaecal, Long-term vascular infusion, etc.

HISTOLOGY

Expanded in-house capacity for tissue sectioning frozen and paraffin embedded

 $Histology\ process,\ FFPE\ tissue\ staining\ and\ veterinary\ pathologist\ analysis\ /\ scoring,\ immunohistochemistry\ (\emph{IHC}),$

immunofluorescence (IF) & tissue microarray (TMA)

MOLECULAR BIOLOGY

qPCR

Models Under Development

Central Nervous System

COGNITION & AGING

Fear conditioning (rat)

ANXIETY

Fear extinction (rat)

NEURODEGENERATION

Cuprizone induced demyelination (mouse)

MPTP-induced lesion (mouse)

MICRODIALYSIS

Oncology

Organoid models of Glioblastoma

Inflammation

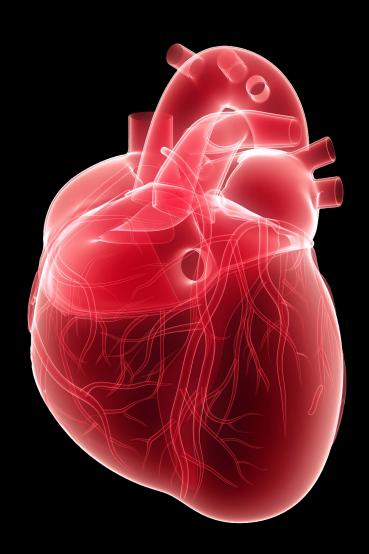
Biomarker analysis in inflammation models (CFA, carrageenan...)

Pain

Migraine model (mouse - rat)

Osteoarthritis (guinea-pig)

TNBS-induced colitis (guinea-pig - rat)


Respiratory System

Rhinitis (guinea-pig)

We have an extensive portfolio of cardiovascular procedures, ranging from standard cardiovascular telemetry studies for safety evaluation, to pathophysiological models for specific therapeutic areas.

CARDIOVASCULAR SYSTEM

We also possess considerable expertise with *in vitro* models, providing clients with a comprehensive assessment of all aspects of cardiovascular function.

in vivo ARRHYTHMIAS & CARDIAC TOXICITY

Digoxin-induced ventricular arrhythmias (anesthetized animals)	Guinea-pig	CV 3.5
Torsades de Pointes arrhythmias (modified Carlsson model)	Rabbit	CV 3.9

in vivo AUTONOMIC NERVOUS SYSTEM

Postural hypotension (anesthetized animals) Rat CV 6.3

in vitro CARDIAC ACTIVITY RECORDING

Calcium assay	iPSC-derived cardiomyocytes	PF 1.7
hCav1.2 channel	HEK 293 cells	CV 5.9
hERG channel	HEK 293 cells	CV 5.6
hERG trafficking	HEK 293 cells	CV 5.10
hKir2.1 channel	HEK 293 cells	CV 5.8
hKir2.1 trafficking	HEK 293 cells	CV 5.13
hNav1.5 channel	HEK 293 cells	CV 5.7
Inositol triphosphate receptor channel function	H9C2 cells	PF 3.21
MEA assay	iPSC-derived cardiomyocytes	CV 5.14

in vivo HEMODYNAMICS

ANESTHETIZED ANIMALS

Arterial blood pressure, heart rate and ECG	Rat - Guinea-pig	CV 1.1
Regional blood flow	Rat	CV 1.5
Systemic, cardiac, renal and pulmonary hemodynamics	Dog - Mini-pig	CV 1.7
Systemic and cardiac hemodynamics (cardiac denervated animal)	Dog	CV 1.11

CONCIOUS ANIMALS (TELEMETRY)

Arterial blood pressure, heart rate ± ECG	Mouse – Rat – Dog Guinea-pig – Mini-pig	CV 1.4
Left ventricular pressure, heart rate ± ECG	Rat – Dog	CV 1.16
Pulmonary arterial blood pressure, heart rate and ECG	Dog	CV 1.14
Right ventricular pressure and heart rate	Rat	CV 1.15

HYPERTENSION

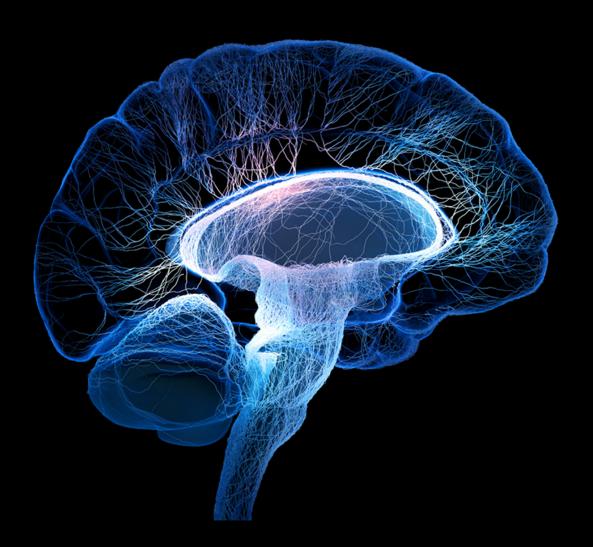
in vitro

in vivo

Endothelial cell activation / Drug-Induced Vascular Injury	HUVECs	PF 1.6
5/6 nephrectomy	Rat	ren 3
Arterial blood pressure and heart rate (anesthetized animals)	SH Rat	CV 2.1
Arterial blood pressure and heart rate (telemetry)	SH Rat	CV 2.4
Bile duct ligation-induced portal vein hypertension (telemetry)	Rat	CV 2.7
Chronic (2K1C) Goldblatt hypertension (high renin model)	Rat	CV 2.5
Chronic DOCA - salt hypertension (low renin model)	Rat	CV 2.3
Monocrotaline-induced pulmonary hypertension (anesthetized animals)	Rat	CV 2.6
Monocrotaline-induced pulmonary hypertension (telemetry)	Rat	CV 2.8

ISOLATED VASCULAR BEDS

ex vivo


Isolated mesenteric artery	Dog	CV 8.4
Isolated saphenous vein	Rabbit – Dog	CV 8.2
Isolated thoracic aorta	Rat – Rabbit	CV 8.1

We offer models in all areas of psychopharmacology, epilepsy, sleep-wake & neurodegenerative disorders.

CENTRAL NERVOUS

SYSTEM

We are uniquely placed to offer a full range of CNS efficacy and safety pharmacology assessments, from basic models and regulatory tests, to the evaluation of abuse and dependence liability and proconvulsant risk using EEG.

in vivo

in vitro CNS GENERAL SCREENING

Calcium response (release or sponsaneous oscillation)	Mouse - Rat primary neurons	PF 3.3
Cytolysis / Viability	Mouse - Rat primary neurons	PF 3.4
Mitochondrial membrane potential measurement	Mouse - Rat primary neurons	PF 3.4
Neurite outgrowth (scratch assay)	Rat primary neurons	PF 3.44
Neurite outgrowth (scholl analysis)	Rat primary neurons	PF 3.45
Accelerating rotarod	Mouse – Rat	CNS 1.17
Activity meter	Mouse – Rat	CNS 1.2
Barbiturate interaction (sleep induction)	Mouse – Rat	CNS 1.8
Beam walking	Mouse – Rat	CNS 1.12
Ethanol interaction (sleep induction)	Mouse – Rat	CNS 1.9
Foot-fault	Rat	CNS 1.16
Grip strength	Mouse – Rat	CNS 1.19
Neurological score	Rat	CNS 1.15
Odor discrimination	Rat	CNS 1.18
Primary observation (Irwin)	Mouse – Rat	CNS 1.1
Rectal temperature (option:implants)	Mouse – Rat	CNS 1.11
Removal of adhesive	Rat	CNS 1.14
Rotarod	Mouse – Rat	CNS 1.5
Tetrad test	Mouse – Rat	CNS 1.13

in vivo COGNITION

AGE-RELATED DEFICIT

Delayed alternation (acquisition)	Aged Rat	CNS 6.10
Delayed alternation (stabilized performance)	Aged Rat	CNS 6.11
Morris water maze (acquisition and retention)	Aged Mouse – Aged Rat	CNS 6.7
Operant reversal	Aged Rat	CNS 6.34
Social recognition	Aged Rat	CNS 6.9
Y-Maze (Novelty-based spatial preference)	Aged Rats	CNS 6.41
Y-Maze (Spontaneous alternation)	Aged Rats	CNS 6.39

EXPERIMENTAL PROCEDURES

Delayed alternation (acquisition)	Rat	CNS 6.13
Delayed alternation (stabilized performance)	Rat	CNS 6.15
Fear Conditioning (context & cue)	Mouse – Rat	CNS 6.38
Morris water maze (single session)	Rat	CNS 6.16
Morris water maze (acquisition and retention)	Mouse – Rat	CNS 6.17
Operant reversal	Rat	CNS 6.24
Operant Set-shifting	Rat	CNS 6.35
Passive avoidance	Mouse – Rat	CNS 6.19
Social recognition (30 minute retention)	Rat	CNS 6.20
Social recognition (120 minute retention) (delay-induced forgetting)	Rat	CNS 6.21
Y-Maze (Novelty-based spatial preference)	Mouse - Rat	CNS 6.41
Y-Maze - Spontaneous Alternation	Mouse – Rat	CNS 6.39
MODELS OF PHARMACOLOGICALLY - IND	UCED AMNESIA	CNS 6.21
Diazepam - induced amnesia		0110 0.21
Passive avoidance	Mouse – Rat	CNS 6.27
MK 801 - induced amnesia		
Delayed alternation (stabilized performance)	Rat	CNS 6.29
Morris water maze (acquisition and retention)	Rat	CNS 6.23
Operant reversal	Rat	CNS 6.31
Passive avoidance	Rat	CNS 6.26
Social recognition (30 minute retention)	Rat	CNS 6.33

Scopolamine - induced amnesia

Delayed alternation (stabilized performance)	Rat	CNS 6.28
Morris water maze (acquisition and retention)	Rat	CNS 6.18
Morris water maze (single session)	Rat	CNS 6.3
Operant reversal	Rat	CNS 6.32
Passive avoidance	Mouse – Rat	CNS 6.1
Social recognition (30 minute retention)	Rat	CNS 6.5

NEURODEGENERATION-RELATED DEFICIT

> See "Neurodegeneration" section on page 24

DRUG ABUSE & DEPENDENCE (Safety and efficacy)

Drug Discrimination	Rat	CNS 7.8
Flumazenil-precipitated withdrawal (ECS threshold)	Mouse	CNS 7.2
Naloxone-precipitated withdrawal (Saelens)	Mouse – Rat	CNS 7.1
Non-precipitated withdrawal (option: telemetry)	Rat	CNS 7.3
Opiate tolerance (hot plate)	Mouse – Rat	CNS 7.4
Place preference	Mouse – Rat	CNS 7.5
Self-administration (initiation)	Rat	CNS 7.6
Self-administration (substitution)	Rat	CNS 7.7
Self-administration (reinstatement)	Rat	CNS 7.9
Self-administration (progressive ratio)	Rat	CNS 7.10

ex vivo ELECTROPHYSIOLOGY

Brain slices (LTP)	Mouse	CNS 9.9
Brain slices (4-AP-induced seizure)	Mouse	CNS 9.10

in vivo

CONCIOUS ANIMALS (TELEMETRY)		
Anesthetized animals		
Compound Motor Action Potential (CMAP)	Mouse - Rat	CNS 9.8
Nerve Conductance Velocity (NCV)	Mouse - Rat	CNS 9.8
EEG trace monitoring	Mouse – Rat – Dog	CNS 9.5

El€	ectrical amygdala kindling	Rat	CNS 9.3
Q	uantified EEG	Mouse – Rat - Dog	CNS 9.7
Sle	eep/wakefulness cycle	Rat	CNS 9.2

EPILEPSY

in vitro

4-AP calcium spontaneous oscillation modulation	Mouse - Rat Primary Neurons	PF 9.16
GABA Pathway (calcium spontaneous oscillations)	Mouse - Rat Primary Neurons	PF 9.17
Glutamate pathway (calcium release and spontaneous oscillations)	Mouse - Rat Primary Neurons	PF 9.18
Kainate (calcium release)	Mouse - Rat Primary Neurons	PF 9.19
NMDA antagonists (calcium release)	Mouse - Rat Primary Neurons	PF 9.20
4-AP induced seizure on hippocampal slices	Mouse	CNS 9.1
6Hz psychomotor	Mouse – Rat – Gerbil	CNS 5.9
Audiogenic seizures	Mouse	CNS 5.7
Bicuculline convulsions	Mouse – Rat	CNS 5.6

in vivo

(calcium release and spontaneous oscillations)	Mouse - Kat Primary Neurons	PF 9.18
Kainate (calcium release)	Mouse - Rat Primary Neurons	PF 9.19
NMDA antagonists (calcium release)	Mouse - Rat Primary Neurons	PF 9.20
4-AP induced seizure on hippocampal slices	Mouse	CNS 9.10
6Hz psychomotor	Mouse – Rat – Gerbil	CNS 5.9
Audiogenic seizures	Mouse	CNS 5.7
Bicuculline convulsions	Mouse – Rat	CNS 5.6
Electrical amygdala kindling (Electrophysiology)	Rat	CNS 9.3
Electroconvulsive threshold	Mouse – Rat – Gerbil	CNS 5.2
GBL-induced absence epilepsy (EEG telemetry)	Mouse	CNS 5.12
Genetic absence epilepsy (WAG)	Rat	CNS 5.14
Intravenous PTZ seizure threshold	Rat	CNS 5.11
Kainic acid convulsions	Rat	CNS 5.10
Kainic acid induced spontaneous seizure	Rat	CNS 5.16
Maximal electroshock	Mouse – Rat	CNS 5.1
Pentylenetetrazole seizures	Mouse – Rat – Dog	CNS 5.15
Pilocarpine induced spontaneous seizure	Rat	CNS 5.17
Pilocarpine convulsions	Rat	CNS 5.13
Picrotoxin convulsions	Mouse – Rat	CNS 5.5
Strychnine convulsions	Mouse – Rat	CNS 5.4

in vitro NEUROINFLAMMATION

Immune cell phagocytosis (E.Coli particles)	hiPSC derived microglia	PF 9.21
Immune cell phagocytosis (S.Aureus particles)	hiPSC derived microglia	PF 9.22
Inflammatory cytokine release (LPS stimuli)	hiPSC derived microalia	PF 9.23

NEURODEGENERATION

in vitro	Glutamate-induced excitotoxicity	Rat cortical or hippocampal neurons	PF 9.33
in vivo	Cuprizone-induced demyelination	Mouse	In developmen
in vivo	ALZHEIMER DISEASE		
	Streptozotocin (STZ) – induced cognitive deficit	Rat	CNS 10.11
	EXPERIMENTAL PROCEDURES Morris water maze		
	Y-maze (Novelty-based spatial preference)		
	HUNTINGTON DISEASE		
	Motor function and neuroscore Subchronic 3-NPA	Rat	CNS 10.8
	< EXPERIMENTAL PROCEDURES		
	Activity meter		
	Rotarod		
	Lesion volume		
	PARKINSON DISEASE		
in vitro	6-OHDA induced toxicity	hiPSC derived dopaminergic neurons	PF 9.32
	MPP+ induced toxicity	hiPSC derived dopaminergic neurons	PF 9.27
New!	Rotenone induced toxicity	hiPSC derived dopaminergic neurons	In developmen
New!	MPP+ induced toxicity	SH-SY5Y cells	PF 9.34
in vivo	Alpha Synuclein PFF model	Mouse	CNS 10.22
	Cognitive deficit Bilateral striatal 6-OHDA lesion	Rat	CNS 10.9
	L-DOPA dyskinesia Unilateral medial forebrain bundle (mfb)	Rat	CNS 10.5
	Motor deficit Unilatera medial forebrain bundle (mfb) 6-0HDA lesion	Rat	CNS 10.2R
	mediai forebrain buridie (mib) 0-01 fbA lesion		

PSYCHIATRIC DISEASES

ANXIETY

Elevated plus-maze	Mouse – Rat – Gerbil	CNS 3.3
Fear extinction	Mouse - Rat	CNS 6.38
Fear potentiated startle reflex	Rat	CNS 3.13
Four plates	Mouse	CNS 3.1
Light-dark box	Mouse	CNS 3.4
Marble burying	Mouse	CNS 3.7
Novelty-induced hypophagia	Mouse – Rat	CNS 3.5
Stress-induced hyperthermia (group-housed animals)	Mouse	CNS 3.6
Stress-induced hyperthermia (singly-housed animals) (option: implants)	Mouse	CNS 3.17
Vogel conflict	Rat	CNS 3.8
DEPRESSION		
Behavioral despair	Mouse – Rat	CNS 2.5
Chronic Mild Stress	Mouse	CNS 2.10
Differential Reinforcement of Low rate (DRL 30)	Rat	CNS 2.6
Open space swimming	Mouse	CNS 2.8
PSYCHOSIS		
Amphetamine hyperactivity	Mouse – Rat	CNS 4.1
Amphetamine stereotypy	Mouse – Rat	CNS 4.2
Catalepsy	Mouse – Rat	CNS 4.9
Dual-hit neonatal PCP and post-weaning social isolation	Rat	CNS.418
MK-801 hyperactivity	Mouse – Rat	CNS 4.13
PCP hyperactivity	Mouse – Rat	CNS 4.8
Prepulse inhibition (deficit induced by apomorphine)	Rat	CNS 4.11
Prepulse inhibition (deficit induced by MK-801)	Rat	CNS 4.14
Prepulse inhibition (deficit induced by PCP)	Rat	CNS 4.15
Sociability (3-Chamber) Test	Mouse	CNS 4.19

STROKE

in vitro

Excitatory neurotransmitter induced excitotoxicity (Glutamate, NMDA, and Kainate)	Rat / Mouse primary neurons	PF 9.29
Excitatory neurotransmitter induced excitotoxicity (Mitochondrial Membrane Potential) (Glutamate, NMDA, and Kainate)	Rat / Mouse primary neurons	PF 9.30
Excitatory neurotransmitter induced excitotoxicity (Calcium Response) (Glutamate, NMDA, and Kainate)	Rat / Mouse primary neurons	PF 9.31
Intrastriatal NMDA administration	Mouse	CNS 10.14
Transient focal cerebral ischemia Middle Cerebral Artery Occlusion	Rat	CNS 10.3

in vivo

< EXPERIMENTAL PROCEDURE

Lesion volume

< EXPERIMENTAL PROCEDURES

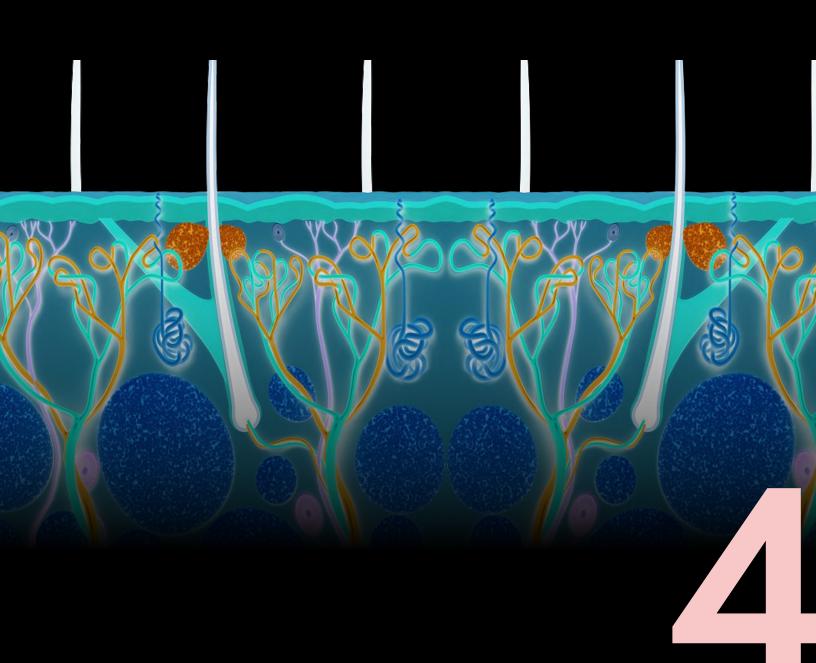
Beam walking

FOOT-FAULT

Removal of adhesive

Neurological score

LESION VOLUME


BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
	Neurons (pan neuron, dopaminergic GABA interneuron, Purkinje)	Rat - Mouse - Pig
	Glial cells (astrocytes, microglia, oligodendrocytes)	Rat - Mouse - Pig
Histology (IHC-P)	Aggregated protein α-synuclein	Human-Mouse (cell supernatant and brain)
- Instology (In C-1)	Neuron activity proteins (synapsin / MBP, myelination)	Rat - Mouse
	Nerve growth factor (NPY,TrkA)	Rat - Mouse
	Ubiquitin system/autophagy (Ubiquitin, P62)	Mouse
	Lysosome (LAMP-1,GCase, PSAP)	Mouse
Staining (paraffin slices)	Hematoxylin & eosin, Sirius red, Masson's trichrome,	Multiple species & tissues
Luminex	Inflammation pathway IL-6, IL-10, MCP-1or IL-8 IFN-γ or IL-1β ,TNF and IL-12p70	Human - Mouse (cell supernatant)
qPCR	miR16, miR132, miR124 TNF- $_{lpha}$, IL- $_{eta}$, IL- $_{eta}$	Mouse (Hippocampus), Rat (Cortex), Primary Neurons
	RAS/Erk Signaling (Erk, P-Erk, S6, P-S6)	Mouse (Pancreas, cerebellum)
WB	Alzheimer Pathway (P-Tau Ser398, P-Tau Ser202 Tyr205, GSK3b & P-GSK3)	Rat (Hippocampus)
ELISA	Amyloid proteins (β-amyloid)	Dog (CSF, plasma)

We offer in vitro and in vivo models that allows for testing at multiple stages of the drug development process.

DERMATOLOGY

Dermatological diseases such as Psoriasis, Allergic Contact Dermatitis (ACD) and Atopical Dermatitis (AD or Irritant Contact Dermatitis) are major skin diseases of immunological origin, and represent a major health problem due to the substantial patient population that is affected.

in vitro

New!

INFLAMMATORY PATHWAY AND ANTI-INFLAMMATORY ACTIVITY

Atopic Dermatitis - Poly (I:C) induced cytokine release	NHEK	PF. 4.26
Cannabinoid anti-inflammatory evaluation Cytokine release	NHEK	PF. 4.27
Cytokine release	Keratinocytes Dendritic cells (Langerhans)	PF. 4.10
IL-6 induced secretion (by IL-17)	NHDF	PF. 4.25
TNFa induced cytotoxicity	L929	PF. 4.1
OXIDATIVE DAMAGE AND ANTI-OXIDA	ANT POTENTIAL	
Cell viability - protection	HaCaT, NHEK, NHDF	PF. 4.2 &
Lipid peroxidation induction	HaCaT, NHEK	PF. 4.23
Reactive Oxygen Species induction (ROS) (multiple inducers)	HaCaT, NHEK	PF. 4.22
PREDICTIVE TOXICITY		
Cytotoxicity - Cell viability	Cell lines (3T3, L929, HaCaT) NHEK, NHDF	TOX 178
Ocular irritation HET-CAM	Chicken egg	PF. 4.14
Skin irritation	Reconstituted human epidermis	PF. 4.15
Skin sensitization	Monocyte cell line (THP1)	PF. 4.20
PROTECTION AGAINST POLLUTION		
Indoor dust - Inflammatory cytokine release	Dendritic cells (Langerhans)	PF. 4.24
Urban dust - Inflammatory cytokine release	NHEK Dendritic cells (Langerhans)	PF. 4.10
Urban dust - Lipid peroxidation	NHEK	PF. 4.9
Urban dust - Reactive Oxygen Species induction (ROS)	NHEK	PF. 4.8
SKIN AGING		
Wound healing	Elderly fibroblast or keratinocyte donor	PF. 4.12
Senescence (oxidative stress induction or high passage senescence)	Keratinocytes	PF. 4.11
Total collagen secretion	Elderly fibroblast donor	PF. 4.13

1

SKIN REGENERATION

Cell migration/Wound healing	HaCaT, NHEK, NHDF	PF. 3.14
Cell proliferation	HaCaT, NHEK, NHDF	PF 3.9
Total collagen formation	NHDF	PF. 4.3

in vivo

IN VIVO Allergic Contact Dermatitis	Pig	DER 2
Imiquimod-induced psoriasis-like skin inflammation	Mouse – Rat	DER 1
Pruritogens-induced scratching behavior	Mouse – Rat	DER 3
Wound healing	Mouse	DER 4

BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
	Skin structure (keratin 10,	
Histology (IHC-P)	loricrin, filaggrin, elastin,	Human (explant or RHE)
	involucrin, e-cadherin, ZO-1)	
	Cell proliferation (Ki67,)	Human (explant or RHE)
	Immune cells (macrophages,	Human (explant or RHE)
	T-cells, Langerhans,)	Mouse, Rat
	α-SMA	Rat Kidney
Staining (paraffin slices)	Hematoxylin & Eosin, Sirius red,	Multiple species
	Masson's trichrome,	& tissues
	Inflammation pathway	
Luminex/CBA	IL-6, IL-10, MCP-1 or IL-8	Human (cell supernatant)
	IFN- γ or IL-1 β ,TNF and IL-12p70	
ELISA	Inflammatory cytokine (TNF-a , IL-6, IL-17)	Mouse (ear)
PCR	IL-17a, IL-17f, IL-22, IL-23p19, IL-1β	Mouse skin

We have extensive expertise and years of experience in gastrointestinal safety pharmacology & efficacy.

GASTROINTESTINAL

SYSTEM

We provide models that focus on different gastrointestinal indications and different parts of the gastrointestinal system. We also continue to develop and validate new and relevant models.

Anti-diarrhea (castor oil)	Mouse – Rat	GI7
Colonic transit (bead model)	Mouse – Rat	GI 1
Fecal consistency	Mouse – Rat	GI 2
EMESIS - NAUSEA		
Early and delayed emesis (telemetry)	Ferret	GI 1
Early anti-emetic activity (morphine, cisplatin, emetine,)	Ferret	GI 1
Emesis induction	Ferret	GI 9
Pica behavior	Rat	GI 1.
FOOD ALLERGY		
Beta-lactoglobulin-induced allergy	Mouse	FA 2
Peanut-induced allergy	Mouse	FA 1
GASTRIC EMPTYING		
Gastric emptying (measurement		
of plasma acetaminophen levels)	Rat	GI 2
Gastric emptying (phenol red test)	Mouse – Rat	GI 8
GASTROINTESTINAL TRANSIT		
Charcoal meal test	Mouse – Rat	GI 1
Distribution pattern of phenol red	Mouse	GI 2
GASTROPARESIS		
Clonidine-induced delayed gastric emptying (liquid meal)	Rat	GI 2
Clonidine-induced delayed gastric emptying (solid meal)	Rat	GI 2
Post operative ileus	Mouse	GI 2
INTESTINAL MUCOSITIS		
	Mouse – Rat	GI 3
Chemotherapy-induced intestinal mucositis	Mouse – Rat	GI
ULCEROGENIC ACTIVITY		
Indomethacin-induced gastric mucosal cell damage	Rat gastric mucosal cells	GI 2
Colorectal distension (CRD model)	mocosar cens	
after acetic acid sensitization	Rat	GI 1
Colorectal distension (CRD model) after TNBS sensitization	Rat	GI 3
Gastric acid secretion (Shay's method)	Mouse – Rat	GI 3

Ulcerogenic activity prevention (induced by ethanol)	Rat	GI 19
Ulcerogenic activity prevention (induced by indomethacin)	Rat	GI 27
VISCERAL SMOOTH MUSCLE		
Isolated colon	Guinea-pig - Rat	VSM 6
Isolated duodenum	Rat	VSM 2
Isolated ileum	Guinea-pig	VSM 1
ADDITIONAL MODELS		
Conditioned taste aversion	Rat	GI 24
Pilocarpine salivation	Mouse – Rat	PNS 7
Salivation induction	Mouse – Rat	PNS 6
	(induced by ethanol) Ulcerogenic activity prevention (induced by indomethacin) VISCERAL SMOOTH MUSCLE Isolated colon Isolated duodenum Isolated ileum ADDITIONAL MODELS Conditioned taste aversion Pilocarpine salivation	(induced by ethanol) Ulcerogenic activity prevention (induced by indomethacin) Rat VISCERAL SMOOTH MUSCLE Isolated colon Guinea-pig - Rat Isolated duodenum Rat Isolated ileum Guinea-pig ADDITIONAL MODELS Conditioned taste aversion Pilocarpine salivation Rat Mouse - Rat

BIOMARKER ASSAYS

	PLATFORM	BIOMARKER	SPECIES (SAMPLE)
New !	Staining (paraffin slices)	Hematoxylin & Eosin, Sirius red, Masson's trichrome, Toludine blue	Multiple species & tissues
	Luminex	Inflammatory cytokines: IL-1 α , IL-1 β , IL-6, IL-10, MCP-1 and TNF	Mouse (ileum, plasma) Mesentric lymph nodes and splenocytes
Biochemi		MPO activity	Mouse, Rat (serum, plasma)
	D'	Ammonia	Rat (serum, plasma)
	ochemical —	Lipid panel (HDL, LDL, GGT, FFA, TG, cholesterol)	Mouse, Rat (serum, plasma)
		Liver function panel (ALAT, ASAT, ALP, bilirubin)	Mouse, Rat (serum, plasma)
	Elisa —	Inflammatory cytokines: TNF-α /IL-1 , IL-6	Mouse, Rat (serum, plasma, ileum)
		Redox potential (GSH)	Mouse, Rat (serum, plasma, ileum)
		Allergy (Total IgE, histamine, mMCP-1)	Mouse (plasma)
	Histology (IHC-P)	Neutrophils (MPO)	Mouse (intestine)

Our capabilities can be included as part of ongoing models or as separate stand-alone services.

HISTOLOGY SERVICES

We have recently expanded our histology capabilities for multiple types of tissues in varied animal species, to support pre-clinical studies, investigative and safety assessment, and toxicology studies.

TISSUE PREPARATION

- Paraffin
- Frozen sections

STAINING

- Routine & special stains
- Immunohistochemistry
- Immunofluorescence

DIGITALIZATION

- Brightfield
- Fluorescence
- Whole slide scanning

ANALYSIS

- Automated image analysis
- Pathologist review
- Machine learning


TISSUE PROCESSING

FFPE (Formalin fixed paraffin embedded) tissue

Frozen tissue embedding and cryosectioning

Decalcification of bone and hard tissues

Tissue Micro Array (TMA)

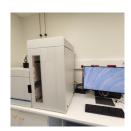
STAINING

Routine stains (Hematoxylin and Eosin, Toluidine Blue, Sirius Red ...)

Special stains (Safranin-O / fast Green, Masson Trichrome ...)

Immunohistochemistry staining

Immunofluorescence staining (multiplex colors)


SCANNING

Whole Slide Scanning

Brightfield and Fluorescence (multiple colors)

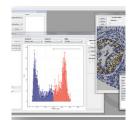
High resolution and high throughput imaging

PATHOLOGY SERVICES

Microscopic observations and findings

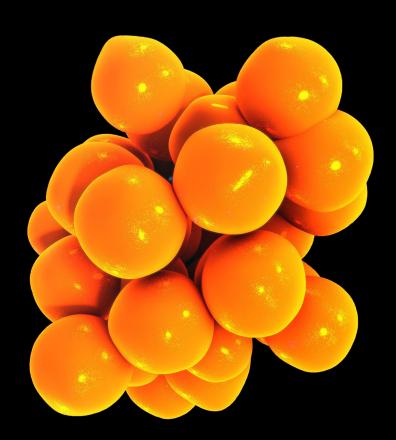
Semi quantitative scoring

Reporting and image illustrations / annotations


AUTOMATED IMAGE ANALYSIS

Tailor-made image analysis algorithm development for staining / IHC / IF slides

Automated and semi automated image analysis


Machine learning / Deep learning approach

Cell population / Quantitative expression / Mapping analysis

INFLAMMATION

Inflammation is a response to a variety of stimuli, including damaged cells, irritants and pathogens, and is relevant for many different indications. Porsolt's varied capabilities and expertise, together with multiple in vitro and in vivo models used for screening, efficacy, and safety assessment of potential compounds, allows us to address the specific needs of the industry.

in vitro IMMUNE RESPONSE

Basophile activation assay (CD200R)	Mouse whole blood	PF 5.11
Cell proliferation	Multiple cellular models	PF 3.9
Cytokine release (inflammation)	Mouse primary splenocytes and mesenteric lymph node hiPS microglia	PF 5.12
Cytolysis	Multiple cellular models	PF 3.4
Immune cell activation and proliferation	Primary mouse splenocytes	PF 5.8
Immune cell killing assay	Human T lymphocyte and tumor cells	PF 10.47
Immune check point inhibitor	(PD1) - (PDL1) biochemical assay (HTRF)	ONC 11.2
Immune check point inhibitor	(CTLA-4) - (B7-1) biochemical assay (HTRF)	ONC 11.2
Phagocytosis	Mouse – Rat Human macrophages	PF 5.10
Sensitization	Monocytes (THP-1 cell line)	PF 4.20

IN VIVO MODELS

in vivo

12-tetradecanoylphorbol-13-acetate (TPA) - induced ear edema	Mouse	PI 18
Air pouch	Mouse	PI 24
Arachidonic acid-induced ear edema	Mouse	PI 31
Carrageenan-induced edema	Mouse – Rat	PI 9.17
Peanut-induced allergy	Mouse	FA 1
Bleomycin-induced lung injury	Guinea-pig	RES 8
Lipopolysaccharide (LPS) Lung Injury (acute)	Mouse	RES 9
Yeast-induced hyperthermia	Mouse	PI 11
DSS-induced colotis model	Mouse	P137

BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
Immunophenotyping (flow cytometry)	Leukocytes (Treg,Tc), neutrophils, monocytes, macrophages	Mouse, Human (blood, bloodbags, buffy coat, bone marrow, tumors)
Histology (IHC-P)	Immune cell detection (CD8, CD3, CD68, CD45,)	Rat, Mouse, multiple organs
Luminex	Inflammation pathway IL-6, IL-10, MCP-1 or IL-8 IFN-γ or IL-1β, TNFα and IL-12p70	Human (cell supernatant)
Flow cytometry (ICC)	STAT pathway (STAT1, STAT2, STAT3, STAT6)	Human (blood)
	Cell signaling (Erk, NFkB, C-jun)	Human (blood)
ELISA	Inflammatory cytokines (TNFα ,IL-1β ,IL-6,IL-10)	Mouse (air pouch exsudat, plasma)
	Inflammatory protein (CRP)	Rabbit (plasma, serum)
Hematology	WBC (White Blood Cell count): neutrophils, macrophages, lymphocytes, eosinophils, basophils	Guinea-pig, mouse (air pouch exsudat, bronchoalveolar lavage fluid, plasma)
qPCR	IL-1 β , IL-6, IL-8, IL-12 α , IL-12 β , MCP-1, TNF- α and INF-y	Guinea-pig (lung)
	COX-2, IL -1β, IL-6, IL-10, TNF-α	Mouse (paw)

Our experience in preclinical safety and efficacy have led to the development of models that focus on the liver & hepatic system.

LIVER & HEPATIC

SYSTEM

This is an important part of the process to better understand the effects of compounds on the liver and the hepatic system.

in vitro	Acetaminophen (acute model)	Primary hepatocytes	PF 6.03
	Cholestasis/Bile canaliculi network	Primary hepatocytes sandwich configuration, Rat	PF 3.16
	Glutathione (GSH), intracellular GSH content	Primary human and rat hepatocytes	PF 3.28
	Steatosis/Lipid, intracellular accumulation : neutral lipids	Primary human and rat hepatocytes	PF 3.29
	Cytolysis	Primary human and rat hepatocytes	PF 3.4
_	Lipid intracellullar accumulation : phospholipids	Primary human and rat hepatocytes	PF 3.30
	3D Hepatotoxicity (Viability)	Primary human hepatocyte spheroids	PF 6.02
in vivo	Acetaminophen (acute model)	Mouse, Rat	LI 2
	Bile Duct Ligation (BDL) (chronic model)	Rat	CV 2.7
	Carbon tetrachloride (CCl4) (acute model)	Rat	LI 1

BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
Histology (IHC-P)	Hepatic transporters (MRP-2, ZO-1,)	Rat (liver)
	Hepatocellular ballooning (H&E, p62)	Rat (liver)
Staining (paraffin slices)	Hematoxylin & Eosin, Sirius red, Masson's trichrome,	Multiple species & tissues
Biochemical	Lipid panel (HDL, LDL, FFA, TG, cholesterol)	Mouse, Rat (plasma, serum)
	Liver function panel (ALAT, ASAT, ALP, bilirubin)	Mouse, Rat (plasma, serum)
ELISA	Inflammatory cytokines (TNF-α /IL-1β /IL-6)	Mouse, Rat (plasma, serum)

MEDICAL DEVICES

Our vast array of models and technical capabilities that has been acquired and validated over many years, enable us to provide testing services for Medical Devices that follow ISO and OECD guidelines and include in vitro and in vivo models for sensitization, toxicity and safety.

CYTOTOXICITY		
MTT colorimetric cell viability assay	L929 cells	TOX 18
Neutral Red colorimetric cell viability Assay	3T3 cells	TOX 19
IRRITATION		
Reconstituted human epidermis irritation assay	Episkin	TOX 21
HET-CAM (Hen's Egg Test Chorio Allantoic Membrane) - alternative to occular irritation assay	Chicken egg	TOX 24
Acute dermal irritation (topical application)	Rabbit	TOX 22
Intradermal reactivity test (intracutaneous injection)	Rabbit	TOX 16
Skin irritation test	Rabbit	TOX 3
SKIN SENSITIZATION		
Local Lymph Nodes Assay (LLNA)	Mouse	TOX 14
TOXICITY		
Skin sensitization	Monocyte cell line (THP1)	PF11.2
Acute systemic toxicity (or repeated doses) alternative to embryotoxicity in mammals	Chicken egg	TOX 23
Acute systemic toxicity	Mouse – Rat	TOX 11
Repeat dose system toxicity	Mouse – Rat	TOX 12

OBESITY & METABOLIC DISORDERS

Obesity and metabolism related disorders are key therapeutic areas that have attracted a global focus in recent times. We have a comprehensive range of models available for obesity, impaired glucose tolerance, and diabetes, to assist with the development of novel therapeutic agents and treatment and reduction of risk factors associated with metabolic diseases.

DIABETES | METABOLIC DISORDERS | OBESITY

DIABETES

in vitro

in vivo

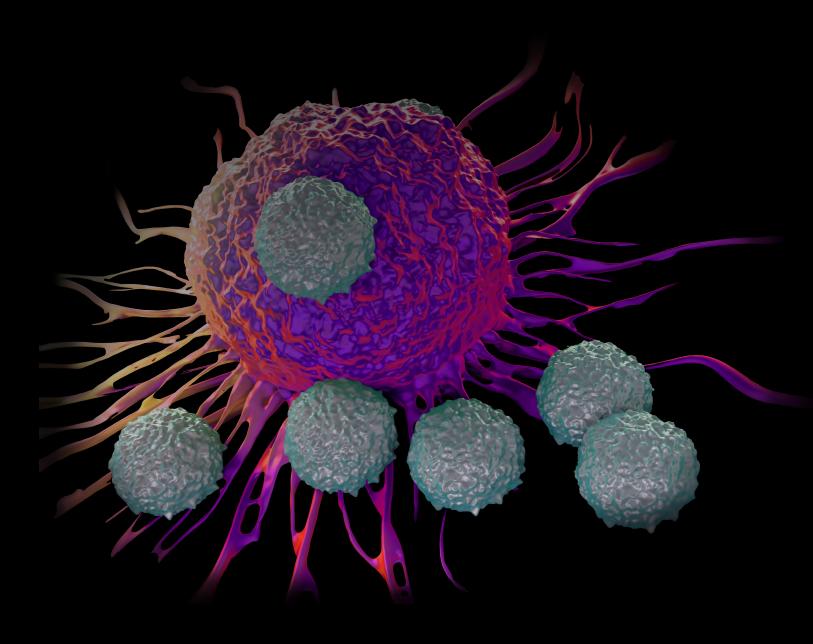
Type 1 diabetes: Cytokine induced pancreatic cell death (ATP content)	Rat insulinoma INS-1 cells	PF 7.3
Glucose stimulated insulin secretion	Rat insulinoma INS-1 cells	PF 7.2
Chemically-induced animal models		
Alloxan-induced type 1 diabetes single injection of alloxan	Rat	MET 17
HFD/STZ-induced type 2 diabetes high fat diet and single injection of streptozotocin	Rat	MET 15
Streptozotocin (STZ)-induced type 1 diabetes single injection of streptozotocin	Mouse – Rat	MET 16
Genetic Animal Models		
Zucker Diabetic Fatty (ZDF) type 2 diabetes, glucose intolerance, hyperinsulinemia	Rat	MET 12
Leptin-deficience ob/ob - db/db obesity, type 2 diabetes	Mouse	MET 7
Nutritional Animal Models		
Diet-induced obesity (DIO) special diets	Mouse	MET 18
Assessments		
Insulin tolerance test (ITT)	Mouse – Rat	MET 2
Intravenous glucose tolerance test (IVGTT)	Rat	MET 1
Oral glucose tolerance test (OGTT) HOMA-IR, QUICKI and ISI calculation	Mouse – Rat	MET 12
METABOLIC DISORDERS		
Insulin tolerance test (ITT)	Mouse – Rat	MET 2

in vivo

in vivo

OBESITY

Genetic Animal models Leptin-deficience ob/ob - db/db obesity, type 2 diabetes	Mouse	MET 7
Zucker Fatty obesity, hyperlipidemia	Rat	MET 7
Nutritional Animal models Diet-induced obesity (DIO) special diets	Mouse	MET 18
Assessments Acute 24-hr feeding	Rat	MET 14
Fast-induced feeding (over 4 hours)	Mouse	MET 13
Food/water intake and body weight gain (3-hr schedule-fed over 10 days)	Rat	MET 6
Food/water intake and body weight gain (over 28 days in pathologic animals)	Mouse – Rat	MET 7


BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
	Pancreas activity (insulin, glucagon)	Mouse, Rat (plasma)
ELISA	Adipocytes (adiponectin, leptin)	Mouse, Rat (plasma)
	Sexual hormone (testosteron)	Mouse, Rat (plasma, serum)
	GI hormones (acyl ghrelin)	Mouse, Rat (plasma, serum)
	Lipid panel (HDL, LDL, FFA, TG, cholesterol)	Mouse, Rat (plasma)
	Liver function panel (ALAT, ASAT, ALP, bilirubin)	Mouse, Rat (plasma)
Biochemical	Renal function (creatinin, urea, electrolytes)	Mouse, Rat (plasma, urine)
	Diabetes (HbA1c)	Mouse, Rat (total blood)
	Pancreas activity (amylase, lipase)	Mouse, Rat (plasma, serum)
Histology (IHC IF)	Insulin and glucagon, H&E Staining	Mouse, Rat (pancreas)

Oncology is an area that commands a larger proportion of the research world's resources.

ONCOLOGY

We can provide in vitro oncology screening and efficacy testing as well as testing in specific in vivo models.

BIOCHEMISTRY - Bioanalysis

IN VITRO

2D screening 3D screening

IN OVO CAM Assay

Hollow Fiber Assay

Tumor Graft

IN VIVO

EX VIVO Proteomic Cytometry Histology

COMPLEXITY

RELEVANCE

RECEPTOR PHARMACOLOGY AND SIGNALING PATHWAYS

Hıal	n-content	ım	aaına

AKT phosphorylation	Multiple cellular models	PF 10.7
Androgen receptor nuclear translocation	LNCaP cell line	PF 10.1
Calcium homeostasis	Multiple cellular models	PF 3.33
cAMP quantification	Multiple cellular models	PF 3.40
ERK activation (pERK1/2)	Multiple cellular models	PF 3.27
NFkB activation	Multiple cellular models	PF 3.23
Prostate Specific Antigen (PSA) expression	LNCap cell line	PF 10.15

TARGETING ANGIOGENESIS

in ovo

HET-CAM assay (screening - 3R approach) Chicken eggs, Multiple cells cancer

ONC 13.1

TARGETING THE IMMUNE SYSTEM: **IMMUNO-ONCOLOGY**

Binding assay of immune abaal, nainta inhihitara /UTDEI

Multiple inhibitors

ONC 11.2

check points inhibitors (HTRF)	Williple Illibilots	ONC 11.2
Immune T-cell infiltration assay (cytometry)	3D co-culture multiple cells	ONC 10.6
Immune T-cell killing assay (high-content imaging)	2D co-culture	PF 10.47
T-cell activation assay (high-content imaging)	Human peripheral mononuclear blood cell and CD3+ T cells	PF 10.50

in vivo

Syngeneic models of: Breast cancer	4T1 cells	ONC 3.1
(anti-PD-1/CTLA-4)	Mouse	OINC 3.1
Colon cancer	CT26.WT cells	0) 10 0 0
(anti-PD-1/CTLA-4)	Mouse	ONC 3.2

TARGETING METASTASIS

ın	VIVO

Experimental lung metastasis syngeneic model of breast cancer	4T1 (Mouse)	ONC 1.1
Experimental lung metastasis syngeneic model of colon cancer	CT26.WT (Mouse)	ONC 1.2
Experimental lung metastasis xenograft model of breast cancer	MDA-MB-231 cells (Mouse)	ONC 8.1
Leptomeningeal Carcinomatosis model	MDA-MB-231 cells (Mouse)	ONC 8.2
Invasion assay (high-content imaging)	Multiple 3D cellular models	PF 3.15
Migration assay (high-content imaging)	Multiple 2D cellular models	PF 3.1

in vitro

in vivo TARGETING TUMOR-ASSOCIATED SIDE EFFECTS

PAIN

Chemotherapy - induced intestinal mucositis	Mouse	GI 32
Chemotherapy - pain - Vincristine model	Rat	PI 21
Chemotherapy induced Pain: Cisplatin model	Rat	PI 41

in vivo

CACHEXIA

Drug-induced cachexia model	Rat	ONC 9.2
Tumor-induced cachexia model	AH-130 cells (Rat)	ONC 9.1
Tumor-induced cachexia model	C26 cells (Mouse)	ONC 9.3
Tumor-induced cachexia model	LLC1 cells (Mouse)	ONC 9.4

TARGETING PRIMARY TUMOR

in vitro

Cell cycle (cytometry)	Multiple 2D or 3D cellular models	PF 3.8
Cell proliferation/cytolysis assay	Multiple 2D cellular models	ONC 10.2
(high-content imaging)		

in ovo

in vivo

Cell viability (colorimetric assay)	Multiple 2D cellular models	ONC 10.1
Clonogenicity assay anchorage-independent	Multiple 3D cellular models	ONC 10.4
Spheroid proliferation/cytolysis assay (high-content imaging)	Multiple 3D cellular models	ONC 10.3
Organoid models of Glioblastoma	Multiple patient samples	In development
Tumor chicken ChorioAllantoic Membrane (TCAM) xenograft assay (screening – 3R approach)	Multiple cellular models Chicken eggs	ONC 4
Hollow fiber assay (screening – 3R approach)	Multiple cellular models (Mouse - Rat)	ONC 5
Orthotopic syngeneic models of:		
Breast cancer	4T1 cells (Mouse)	ONC 3.1
Colon cancer	CT26.WT/C26 cells (Mouse)	ONC 3.2
Glioblastoma (brain tumor)	GL261 cells (Mouse)	ONC 3.3
Kidney cancer	RenCa cells (Mouse)	ONC 3.4
Orthotopic xenograft models of:		
Breast cancer	MDA-MB-231/BT 20 (Mouse)	ONC 7.1
Glioblastoma (brain tumor)	U87MG cells (Mouse)	ONC 7.2
Pancreatic cancer	BxPC-3/PANC-1 cells (Mouse)	ONC 7.3
Subcutaneous syngeneic models of:		
Breast cancer	4T1 cells (Mouse)	ONC 2.1
Colon cancer	CT26.WT/C26 cells (Mouse)	ONC 2.2
Glioblastoma (brain tumor)	GL261 cells (Mouse)	ONC 2.3
Lung cancer	LLC1/KLN205 cells (Mouse)	ONC 2.4
Renal Cancer	105K cells (Mouse) (TSC Alliance)	ONC 3.4
Subcutaneous xenograft models of:		
Bladder cancer	SW780 cells (Mouse)	ONC 6.13
Breast cancer	MDA-MB -231/BT-20 cells (Mouse)	ONC 6.1
Colon cancer	HCT-8/HCT-116 cells (Mouse)	ONC 6.2
Fibrosarcoma	HT-1080 cells (Mouse)	ONC 6.9

Glioblastoma (brain tumor)	U118MG/U87MG/ U138MG cells (Mouse)	ONC 6.3
Kidney cancer	ACHN cells (Mouse)	ONC 6.4
Liver cancer	Hep3B2.1-7/HepG2 cell (Mouse)	ONC 6.6
Lung cancer	A549/PC-9/H69 cells (Mouse)	ONC 6.5
Pancreatic cancer	BxPC-3/CFPAC-1/ PANC-1 cells (Mouse)	ONC 6.11
Prostate cancer	LNCaP/PC-3 (Mouse)	ONC 6.10

BIOMARKER ASSAYS

PLATFORM	BIOMARKER	MATRIX
Immunophenotyping	Regulatory T-cells (CD4, FoXP3) Cytotoxic T-cells (CD8)	Mouse
	Breast cancer (ER, PR, HER-2)	Mouse, Human Tumor xenograft
Histology	Epithelial to mesenchymal transition (E-cadherin, Vimentin)	Mouse, Human Tumor xenograft
	Immune cells (T-cells, macrophages,)	Rat, Mouse
	Tumor microenvironment (Apoptosis, proliferation, hypoxia, angiogenesis)	Rat, Mouse, Human
Staining	Hematoxylin & Eosin, Sirius red, Masson's trichrome	Multiple species
(CDA	Th1/Th2/Th17 pathway (IL-2, IL-4, IL-6, IFN-γ , TNF α, IL-17A, IL-10)	Mouse, Human
Luminex/CBA	Inflammation pathway (IL-6, IL-10, MCP-1, IL-8, IFN-γ , IL-1β , TNF, IL-12p70)	Mouse, Human
Western Blot	Ubiquitin, Lamin B1, ERK1/2, P-ERK1/2, P-S6k1, S6K1 AKT, P-AKT, GSK3, P-GSK3, GAPDH, PSMA, EGFR, H3, HIF-1a, CA9	Mouse, Rat, Human (multiple cells and tissues)
Multimodal acquisition	Cell metabolism (DHFR, protein synthesis), Cell stress (ROS, lipid peroxidation, intracellular phospholipid accumulation, mitochondrial membrane potential, GSH), Hypoxia (Pymonidazole), Autophagy (LC3B), Signaling (ERK1/2, NfKB, AKT, AR, PSA, cAMP, calcium homeostasis)	

Pain is a growing area of interest in the industry and we are perfectly placed to provide services with recognized expertise and many years of experience.

PAIN

We offer a variety of models, from *in vitro* screening, to *in vivo* acute, neuropathic, and chronic pain, addressing pain therapeutics and pain associated symptoms and side effects.

in vivo ACUTE PAIN

Cold plate	Mouse – Rat	PI 36
Hot plate	Mouse – Rat	PI 1
Modified hot plate	Mouse	PI 28
Pain after local administration	Mouse – Rat	PI 40
Pinchmeter	Mouse – Rat	PI 22
Tail flick	Mouse – Rat	PI 2

in vivo INFLAMMATORY PAIN

Capsaicin paw	Mouse – Rat	PI 30
Carrageenan-induced acute inflammatory pain (reversal & prevention protocol)	Mouse - Rat	PI 14
Complete Freund Adjuvant (CFA) - induced acute inflammatory pain	Mouse – Rat	PI 20
Complete Freund Adjuvant (CFA) - induced chronic inflammatory pain: monoarthritis model	Mouse - Rat	PI 15
Formalin paw (early phase)	Mouse – Rat	PI 7
Formalin paw (late phase)	Mouse – Rat	PI 8
Migraine model	Mouse – Rat	In development
Mono-iodoacetate (MIA) - induced chronic inflammatory pain: osteoarthritis model	Rat	PI 19
Mono-iodoacetate (MIA) - induced low back pain	Rat	PI 43
Osteoarthritis	Guinea-pig	In development

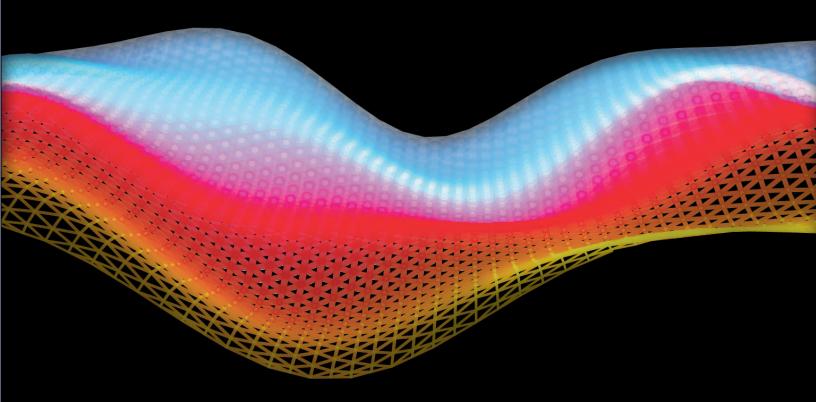
in vivo NEUROPATHIC PAIN

Chemotherapy-induced neuropathic pain: Cisplatin	Rat	PI 21
Chemotherapy - induced neuropathic pain: Vincristine model	Rat	PI 21
Chronic Constrictive Injury - induced neuropathic pain: CCI/Bennett model	Rat – Mouse	PI 12
Diabetic-induced neuropathy	Rat	PI 23
Spared nerve injury	Rat	PI 42
Spinal Nerve Ligation - induced neuropathic pain: SNL/Chung model	Rat - Mouse	PI 13

Brennan model post-operative pain	Rat – Guinea-pig	PI 16
VISCERAL PAIN		
Acetic acid writhing	Mouse	PI 6
Colorectal distension (CRD)	Rat	GI 30
Dextran Sodium Sulfate (DSS)-induced colitis	Mouse	PI 37
Parabenzoquinone writhing	Mouse	PI 27
TNBS-induced colitis	Guinea-pig - Rat	In development

NON-EVOKED PAIN ENDPOINTS

Home Cage Observation	Locomotor Activity	Rotarod
Dynamic Weight Bearing	Gait Score	Ptosis
Abnormal Postures		


BIOMARKER ASSAYS

PLATFORM	BIOMARKER	MATRIX
gPCR	IL-1 β , IL-6, IL-10, IL-17-A, IL-17F, MCP-1 and TNF α	Rat (colon)
·	COX-2, IL-1β, IL-6, IL-10, TNF-α	Mouse (paw)
Luminex	Under Development	Rat Plasma

Our varied capabilities and expertise enable us to use multiple routes of administration, in different species & collect a variety of tissues for analysis.

PHARMACOKINETICS

Pharmacokinetics (PK) studies are a key component of drug development programs, that help determine the appropriate modes of administration, dose ranges and treatment timing. We have many years of experience, performing pK studies, as stand-alone services, or as part of larger studies involving established models.

PK studies in multiple species:

- Mouse - Ferret - Mini-pig - Rat - Rabbit - Pig (incl. piglet) - Guinea-pig - Dog

Routes of administration

Star	ndard	Intracerebroventricular (i.c.v) Intramuscular (i.m.) Intranasal (i.n.) Intraperitoneal (i.p.) Intraplantar (i.pl.) Intravenous (i.v., caudal, cephalic, saphenous, ear) Nebulization Oral: per os (p.o.), capsule Subcutaneous (s.c.) Topical application (ex: ear, skin, ocular) Transdermal, transmucosal (using patch)
Unc	Jer Anesthetic	Intra-tracheal Intra-lesion Intra mammary fat pad Intraarticular (knee, ankle, facet joint) Intracardiac (with or without thoracotomy) Intracaecal Intracerebroventricular (i.c.v), intracerebral (using stereotaxy) Intracolonic Intradermic Intrapancreatic Intrarenal Intrathecal (i.t.), intraspinal Intratibial Intratumoral Oropharyngeal aspiration Perineural (ex: perineural)
=	Catheterization	Intracaecal, intrajejunum, intravesical
=	Intravenous catheterization (iv. slow bolus or infusion)	Caudal, femoral, jugular, cephalic, saphenous veins
-	Mini-pump implantation (i-precio, osmotic) for infusion	s.c. i.v. i.p

Types of tissue and fluid collected

Adipose Tissue	Diaphragm	Paw
Adrenal Gland	Ear	Skin
Ascitic Fluid	Ganglia	Spinal Cord
Bladder	Heart	Spleen
Blood (Plasma, Serum, Whole)	Intestines	Stomach
Bone	Kidney	Testis
Brain (Cerebral Structures)	Liver, Lymph nodes	Thymus
Bronchoalveolar Liquid	Lung	Tumor
Caecum	Muscle	Urine
Cerebrospinal Fluid	Nerve	Vesicular Gland
Colon	Ovary	

Clinical Chemistry | Coagulation | Hematology | ELISA

> Read the detailed chapter "Biomarker Assays" (in Capabilities section) on p.78

We have accurate toxicity prediction in vitro services conducted in true target cells and within the physiological environment found with primary cultures.

PREDICTIVE TOXICITY

Drug toxicity is one of the major reasons for drug attrition. Existing traditional methods does not have adequate *in vitro* predictability. We combine the most predictive cell models (e.g. primary cultures of target organs) with optimized assays specific to each type of toxicity, analysis and specific methods.

in vitro CARDIOTOXICITY

COMPREHENSIVE IN VITRO PROARRHYTHMIA ASSAY (CIPA):

THE RESIDENCE			
d the detailed of these tests on page 16	Electrophysiology measurement (conventional manual patch-clamp)	Cardiac ion channels	CV 5.6 to CV 5.9*
	Cardiotoxicity	iPSC-derived cardiomyocytes: iCell2®	PF 1.08
_	Proarrhythmic risk assessment (MEA & Calcium transient assay)	human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)	CV 5.14 PF 1.7
n vitro	RUG INDUCED VASCULAR INJUI	RY (DIVI)	
	Cell toxicity	HUVEC	PF 11.1
	Coagulation impairment Tissue Factor and Thrombomodulin	HUVEC	PF 11.1
	Leucocyte recruitment VCAM-1, E-Selectin and ICAM-1	HUVEC	PF 11.1
n vitro	GASTROINTESTINAL SYSTEM		
	Gastric mucosal cell damage	Primary Rat gastric mucosal cells	GI 29
n vivo	CENIEDAL TOVICITY		
	GENERAL TOXICITY		
	Acute toxicity	Rat – Mouse – Dog – Mini-pig	TOX 11
_		Rat – Mouse – Dog – Mini-pig Rat – Mouse	TOX 11
n vitro	Acute toxicity		
n vitro	Acute toxicity Preliminary chronic toxicity		
n vitro	Acute toxicity Preliminary chronic toxicity HEPATOTOXICITY	Rat – Mouse Primary hepatocytes (R) sandwich	TOX 12
n vitro	Acute toxicity Preliminary chronic toxicity HEPATOTOXICITY Cholestasis & bile canaliculi network	Rat – Mouse Primary hepatocytes (R) sandwich configuration Primary hepatocytes	TOX 12
n vitro	Acute toxicity Preliminary chronic toxicity HEPATOTOXICITY Cholestasis & bile canaliculi network Cytolysis (2D & 3D) Oxidative stress:	Rat – Mouse Primary hepatocytes (R) sandwich configuration Primary hepatocytes (H & R) and HepG2 Primary hepatocytes	PF. 3.16 PF. 3.4

in vitro NEPHROTOXICITY

Cytolysis	RPTECs, HK-2, MDCK-II and CRFK	PF 3.4	
Lysosomal activity	RPTECs and HK-2	PF 3.7	
Mitochondrial membrane potential	RPTECs and HK-2	PF 3.3	

NEUROTOXICITY

Cytolysis	cell lines	PF 3.4
Excitotoxicity Calcium measurement	Primary neurons (R, M) cell lines	PF. 3.33
Mitochondrial nembrane potential	Primary neurons (R, M) cell lines	PF. 3.3
 Neurite outgrowth	Primary neurons (R,M) cell lines	PF 3.6

SKIN TOXICITY

Cytotoxicity - Cell viability	3T3 & L929 fibroblasts	TOX 18&19
Ocular irritation (HET-CAM)	Chicken egg	TOX 24
Skin irritation	Reconstituted human epidermis	TOX 21
Skin sensitization	Monocyte cell line (THP1)	PF 11.2

The effects of compounds and therapies on the respiratory system can be assessed using a variety of models & species, with which we have extensive experience.

RESPIRATORY

SYSTEM

These models can be used for assessing the efficacy and/or safety of compounds, and include models for airway function, asthma, cough, fibrosis, bronchospasm, etc.

ex vivo

in vivo

Isolated pulmonary artery	Rat	RES 10
Isolated trachea	Rat – Guinea-pig	RES 4
Airway function (whole body plethysmography)	Mouse – Rat Guinea-pig	RES 1
Airway function in large animals	Dog	RES 7
Airway function under hypercapnia (whole body plethysmography)	Rat	RES 2
Bleomycin-induced pulmonary fibrosis	Guinea-pig - Mouse	RES 8
Citric acid-induced cough	Guinea-pig	RES 6
Histamine bronchospasm	Guinea-pig	RES 3
LPS-induced pulmonary injury	Guinea-pig - Mouse	RES 9
Ovalbumin-induced asthma	Guinea-pig	RES 5
Tracheal mucus output	Mouse	RES 11

BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
Staining (paraffin slices)	Hematoxylin & Eosin, Sirius red, Masson's trichrome	Multiple species & tissues
Luminex/CBA	TNF, IL-6, IL-1 β , IL-10 and MCP-1	Mouse (BAL)
Biochemical	MPO activity	Mouse (whole lung)
Hematology	WBC (White Blood Cell count): Neutrophils, Macrophages, Lymphocytes, Eosinophils,Basophils	Guinea-pig - Mouse (BAL)
ELISA	TNF, IL-6, IL-1β	Mouse (BAL)
qPCR	IL IL-6, IL-10,TNF-a, IL-1β, IL-6, IL-8, IL-12a, IL-12β, MCP-1, TNF-a and INF-γ	Guinea-pig - Mouse

SAFETY REGULATORY

PACKAGE

Our broad expertise and years of preclinical pharmacology experience make us the ideal partner to conduct your GLP Safety Pharmacology experiments. We offer safety studies in both in vitro and in vivo models with facilities, procedures, materials and software, that are validated to GLP standards.

ın	VIVO

BEHAVIORAL PHARMACOLOGY STUDIES FOR INVESTIGATING ABUSE AND DEPENDENCE POTENTIAL

Conditioned place preference	Rat	CNS 7.5
Drug discrimination	Rat	CNS 7.8
Non-precipitated withdrawal (option: telemetry)	Rat	CNS 7.3
Self-administration (initiation)	Rat	CNS 7.6
Self-administration (substitution)	Rat	CNS 7.7

CORE BATTERY [ICH S7]

CARDIOVASCULAR ACTIVITY RECORDING

in vitro

hERG channel HEK 293 cells CV 5.6

CARDIOVASCULAR STUDIES IN CONSCIOUS ANIMALS

in vivo

Arterial blood pressure, Mouse – Rat – Dog
heart rate and ECG Guinea-pig – Mini-pig

CENTRAL NERVOUS SYSTEM STUDIES

in vivo

Activity meter	Mouse – Rat	CNS 1.2
Primary observation (Irwin)	Mouse – Rat	CNS 1.1
Rotarod	Mouse – Rat	CNS 1.5

RESPIRATORY STUDIES

in vivo

Airway function	Mouse – Rat	DEC 1
(whole body plethysmography)	Guinea-pig	KES I

FORMULATION ANALYSIS

> Read this detailed content in "Capabilities Section" on page 80

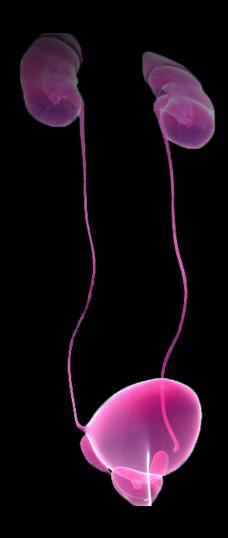
SUPPLEMENTAL STUDIES

in vivo

Autonomic nervous system	Rat	CV 6
Cardiovascular studies in anesthetized animals	Multiple species	CV 1*
Gastrointestinal system	Multiple species	GI
Renal function	Mouse – Rat	REN
Cardiomyocytes	iCell ² ®	CV5.14

in vitro	
in vivo	
III VIVO	

Endothelial cell activation/ Drug-Induced Vascular Injury (DIVI)	HUVECs cells	PF 2.1
Arterial thrombosis (FeCl2)	Rat	BL 3
Arterio-venous shunt (silk thread model)	Rat	BL 5
Bleeding time (anesthetized animal)	Rat	BL 2
Venous thrombosis (FeCl2)	Rat	BL 4


BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
	APTT (Activated Partial Thrombin Time)	Multiple species
Coagulation	Prothrombin time	Multiple species
	Fibrinogen	Multiple species
Hematology	Complete Blood Count: - Red blood cells: hemoglobin, hematocrit, mean cell volume, mean cell hemoglobin concentration, platelets - White blood cells: lymphocytes, neutrophils, eosinophils, basophils, monocytes	Multiple species

UROGENITAL

SYSTEM

We provide models for assessing the effects of compounds and potential therapies on blood flow. These models can be used for investigating direct effects or confounding and side effects of specific treatments on blood flow.

BLADDER FUNCTION

Rat	VSM 4	
Rat	VSM 3	
Rat	UG 1	
RPTECs, HK-2, MDCK-II and CRFK	PF 3.4	
RPTECs	PF 3.7	
RPTECs and HK-2	PF 3.3	
Mouse – Rat	REN 1	
Rat	REN 4	
Rat	REN 3	
Rat	CV 2.5	
D	CV 2.3	
	Rat RPTECs, HK-2, MDCK-II and CRFK RPTECs RPTECs and HK-2 Mouse – Rat Rat	

(low renin model)

BIOMARKER ASSAYS

PLATFORM	BIOMARKER	SPECIES (SAMPLE)
Histology (IHC-P)	Urothelium structure & thickness (E-Cadherin)	Rat
Fibrosis	αSMA	Rat
Staining (paraffin slices)	Hematoxylin & Eosin, Sirius red, Masson's trichrome	Multiple species & tissues
Biochemical	Renal function (creatinin,urea, electrolytes, total protein, albumin)	Mouse, Rat (urine, serum, plasma)
	Glomerular filtration (creatinin clearance)	Mouse, Rat (serum, plasma)
	Blood Urea Nitrogen (BUN)	Mouse, Rat (urine, serum, plasma)
qPCR	αSMA, TNF-α, Fibronectin, CCL-2 and TGF- β1	Mouse

CAPABILITIES

Biomarker Assays

Clinical chemistry

< PARAMETERS MEASURED ON SERUM/PLASMA SAMPLES

Calcium (total)

Magnesium, Phosphorus, Sodium, Potassium

Chloride/Triglycerides/Creatinine

Total Bilirubin

AST (Aspartate Aminotransferase)/ALP (Alkaline Phosphatase)/ALT (Alanine Aminotransferase)

GGT (Gamma Glutamyl Transferase)

Cholesterol/HDL cholesterol/LDL cholesterol/Glucose

NEFA (Non Esterified Fatty Acids)

Total proteins/Urea/Albumin

Amylase (pancreatic)/Lipase

Insulin/Glucagon

Adiponectin/Leptin

< PARAMETERS MEASURED ON URINARY SAMPLES

Creatin

Sodium, Potassium, Chloride

Albumin (microalbumin)/Total proteins/Semi-quantitative parameters

< PARAMETERS MEASURED ON CELL CULTURE SUP.

LDH (lactate deshydrogenase)

< PARAMETERS MEASURED ON TOTAL BLOOD

HbA1c (glycated hemoglobin)

Coagulation

< PARAMETERS MEASURED ON PLASMA SAMPLES

APTT (Activated Partial Thrombin Time)

Prothrombin Time/Fibrinogen

Hematology

< PARAMETERS MEASURED ON TOTAL BLOOD SAMPLES

Complete blood count including red blood cell, hemoglobin,hematocrit, mean cell volume, mean cell, hemoglobin, mean cell hemoglobin concentration, platelets, white blood cell, neutrophils, lymphocytes, monocytes, eosinophils, basophils.

Immuno assays:

- ELISA / AlphaLISA
- HTRF (Homogeneous Time Resolved Fluorescence)
- Immunostaining of cell surface and intracellular biomarkers
- Multiplexed immunophenotyping
 & biomarker detection by automated
 5-laser flow cytometry
- Multiplexed analysis of soluble and intracellular protein expression by the Luminex and BDTM Cytometric Bead Array (CBA) technique

- High-throughput flow cytometry
- FLIPR Tetra high-throughput cellular screening system
- High-content histology:
 - tissue sections
 - 3D microtissues
 - tissue microarray
- High-throughput image acquisition of IF/IHC-stained tissue sections or tissue microarrays

Cell & Tissue Banks

Fresh blood from healthy donors through an agreement with the French blood bank.

Primary cell cultures:

- Cryopreserved primary cells (rodents and human)
- Freshly isolated rodent primary cell cultures:
 - neurons, astrocytes, oligodendrocytes, microglia
 - pituitary cells
 - hepatocytes
 - splenocytes

Human Induced Pluripotent Stem Cells (hIPSC) derived cells:

- hiPSC derived dopaminergic neurons
- hiPSC derived Microglia
- iCell^{2®} (Cardiomyocytes)

Cell lines:

- Cancer cell lines: liquid and solid tumors
- Normal immortalized cell lines
- Cell lines expressing our proprietary specific biosensors

Artificial 3D microtissues

Human & animal tissue access & processing

(commercial and tailor-made Tissue Micro Arrays)

Formulation Analysis

Porsolt's vast portfolio of models and services for different indications also allows us to provide a comprehensive follow-up analysis of your project as part of a larger development program.

Method transfer or development

Method validation:

- specificity - accuracy - linearity

Stability and homogeneity evaluation

- precision

(stock and dosing formulations)

Adsorption evaluation

(for in vitro studies)

Formulation analysis:

- concentration verification
- homogeneity of formulations

Image Processing & Data Analysis

Image processing and data analysis provide very useful tools for biological applications.

Firstly, acquired images are described based on adapted and customized features (texture, color, grey-level, shape, etc.). The obtained image information is classified using data analysis and visualization methods.

Image acquisition:

- High image resolution
- Tissue preview and ROI selection
- Brightfield and fluorescence for IHC and IF

Quantitative image analysis:

- Intensity of labeling
- Subcellular target characterization
- Event counting
- ROI detection

- Tissue structure description (shape, tissular organization, etc.)
- Features linked to neuronal biology
- Indices to assist pathologists with their diagnoses (e.g. in oncology)
- > Clients can send their own images for quantitative image & data analysis and pathology review.

Technical Skills

Stereotaxic surgery

Ligation models

Microdialysis

Spinal surgery

Cystometry

Medical device implantation

Telemetry device implantation

Induction of cognitive deficits

Nephrectomy Induction of neuropathic pain

Induction of arthritis and

Post-operative pain

osteo-arthritis

Pump administration

> Read «Routes of administration» and «Types of tissue and fluid collected» p. 62-63

Technical Capabilities

Facilities

Conventional animal facility | IVC housing | Biosafety level 2 (BSL2) facilities

Equipment

HPLC

High-throughput Fluorometric Luminometric Imaging Plate Reader (FLIPR)

Automated multipurpose plate reader (e.g. for HTRF, Absorbance, Luminescence, Fluorescence measurements)

QuantStudio™ 5 Real-Time PCR
System

High-content imaging

Immunohistology processing platform

Live-content imaging

Automated flow cytometry

Automated video detection

In vivo telemetry systems

High-throughput label-free and image-based cytometry

Biochemistry analyzer

Hematology analyzer

Non-invasive multimodal in vivo imaging (e.g. for luminescence, fluorescence, and X-ray)

Ultrasound imaging

Automated Immunoassay multiplex array Bio-Plex 200 System (Luminex® technology)

www.porsolt.com contact@porsolt.com +33 (0)2 43 69 36 07 Le Genest-Saint-Isle, France

www.porsolt.com